lunes, 16 de mayo de 2011

La nave secreta de la Unión Soviética

La nave secreta de la Unión Soviética

La nave secreta de la Unión Soviética


La Unión Soviética llegó a fabricar y lanzar cuatro tipos de naves capaces de transportar seres humanos al espacio. Las primeras fueron las míticas Vostok y sus variantes, las Vosjod. Después llegarían las robustas Soyuz, aún en servicio. En los años 80 se introdujo el sistema Burán, un gran transbordador espacial que sólo llegaría a volar en una ocasión y sin tripulación. Sin embargo, la cuarta nave sigue siendo una desconocida para la mayoría del público. Esta es la historia de la nave de Cheloméi.

Esta entrada ha sido realizada conjuntamente por Paco Arnau de Ciudad Futura y Daniel Marín de Eureka. Vuestros comentarios serán bienvenidos en ambos sitios. Este trabajo común parte de nuestra convicción de que la Red debe servir para colaborar y compartir ideas, conocimientos e iniciativas.

[Nota de los autores: En el mismo día de su publicación (11/01/2011) este trabajo —publicado simultáneamente en Eureka y en Ciudad futura con el mismo título e iguales contenidos— ha recibido el prestigioso Premio ED ('Experientia docet') a la excelencia en la divulgación científica. Nos congratulamos por ello y agradecemos a ED esta magnífica recompensa a nuestro trabajo].



Vladímir Nikoláievich Cheloméi

La estrella de Cheloméi

En 1960, Vladímir Nikoláievich Cheloméi entraría a formar parte del selecto grupo de ingenieros responsables del programa espacial soviético de la mano de Nikita Jruschov. Su oficina de diseño, la OKB-52, pronto dejaría de ser un oscuro instituto de investigación especializado en la construcción de misiles de crucero para convertirse en todo un imperio aeroespacial a golpe de decreto. Puede que la intención del líder soviético fuese romper el monopolio en temas espaciales que ejercía la oficina OKB-1 del gran Serguéi Koroliov. O quizás sólo quería echarle una mano a su hijo, por entonces ingeniero de la OKB-52. Quién sabe. En cualquier caso, Cheloméi pronto pasaría a la acción proponiendo todo un programa espacial paralelo al de Koroliov. Cohetes gigantes, estaciones espaciales, raketoplanos... cualquier cosa parecía posible para el ambicioso Cheloméi.

LK-1 y LK-700

El 3 de agosto de 1964 Cheloméi lograría su primera gran victoria frente a Koroliov. Ese día, Jruschov decidió entregar sin previo aviso el programa de sobrevuelo lunar L1 de la OKB-1 para entregárselo a la OKB-52. Cierto es que el programa L1 de Koroliov preveía hasta seis lanzamientos de cohetes derivados del R-7 Semyorka para mandar una nave Soyuz alrededor de nuestro satélite, mientras que la propuesta de Cheloméi sólo necesitaba un lanzamiento de su nuevo y flamante lanzador pesado, el Protón (UR-500K / 8K82K). El proyecto se denominaría LK-1 (Lunni Korabl/Лунный Корабль, "nave lunar") y tendría como objetivo enviar un cosmonauta a la Luna antes de 1967, a tiempo para celebrar así el 50º aniversario de la Revolución Socialista de Octubre.

Maqueta de la nave lunar LK-1

El diseño de la LK-1 era muy similar a la Apolo norteamericana, consistente en una pequeña cápsula cónica y un módulo de servicio. La cápsula, denominada simplemente "aparato de retorno", VA (Vozvraschaemi Apparat / Возвращаемый Аппарат), sería la primera incursión de la OKB-52 en el diseño de un vehículo de este tipo. La masa de la LK-1 no superaría las cuatro toneladas, mientras que su diámetro máximo sería de 2,511 metros. La OKB-52 llevó a cabo innumerables pruebas para encontrar la forma óptima para la VA y que fuese capaz de soportar las temperaturas de una reentrada atmosférica a velocidades superiores a los 11 km/s, la "velocidad de escape" terrestre. Las características aerodinámicas de la VA serían superiores a las de la cápsula de la Soyuz (SA), cuya forma de campana estaba dictada por la necesidad de maximizar su volumen interno.

Pero la LK-1 no llegaría muy lejos. A finales de 1964 Jruschov es apartado del poder y Cheloméi pierde su principal apoyo político. Aunque se mantendrá como una de las grandes oficinas del programa espacial, ya nada volverá a ser lo mismo para la OKB-52. De entrada, el programa LK-1 es cancelado y devuelto a la oficina de Koroliov. La OKB-1 decidirá mantener el Protón como lanzador principal del proyecto, pero sustituyendo la LK-1 por una nave Soyuz modificada (7K-L1), conocida en Occidente bajo el sobrenombre de Zond.

Cheloméi no tira la toalla y propone en 1964 un programa de vuelo tripulado a la superficie lunar usando el cohete gigante UR-700. El proyecto sería una competencia directa al programa de alunizaje N1-L3 de Koroliov, en teoría el único que contaba con la autorización del gobierno soviético. Según los planes de la OKB-52 (por entonces renombrada TsKBM), el UR-700 mandaría a la Luna una nave LK-3 en una trayectoria directa, sin necesidad de pasar por la órbita terrestre o la lunar. La LK-3 pronto daría paso a la LK-700, más masiva. Ambos vehículos emplearían el mismo diseño de cápsula VA ideado para la LK-1, pero ampliado para soportar una tripulación de dos cosmonautas. La masa de la nave en la superficie lunar superaría las 17 toneladas (frente a las 15 toneladas del módulo lunar del Apolo), aunque la VA tendría una masa de sólo 3,1 toneladas al aterrizar (el módulo de mando del Apolo pesaba 5,3 toneladas una vez finalizada la misión). Lamentablemente, el programa UR-700/LK-700 jamás pasó de la fase de diseño previo y Cheloméi se quedó, una vez más, sin la posibilidad de mandar un hombre al espacio.


Almaz: OPS, TKS y VA

A mediados de los años 60, mientras trabajaba en los programas LK-1 y LK-700, Cheloméi propuso otro proyecto no menos ambicioso: una estación espacial militar que pudiese espiar a los Estados Unidos. El proyecto recibió el nombre en código de Almaz ("diamante"), siguiendo la tradición de la OKB-52 de nombrar sus proyectos con nombres de piedras preciosas. A diferencia de los "fantasiosos" planes lunares, Almaz recibió muy pronto el apoyo incondicional de los militares soviéticos, temerosos de las capacidades del programa MOL de la Fuerza Aérea norteamericana.


Almaz era un proyecto ambicioso. La estación espacial (11F71) se denominaría OPS (Orbitalnaia Pilotiruemaia Stantsia / Орбитальная Пилотируемая Станция, ОПС, "Estación orbital tripulada") y estaría equipada con un enorme telescopio Agat-1 ("ágate"). El Agat no era cualquier cosa. Con un espejo de dos metros de diámetro y 7,2 metros de focal, era una especie de Hubble de los años 60. Eso sí, apuntando en la dirección "equivocada". Las OPS contarían también con pequeñas cápsulas automáticas (11F76) para enviar a la Tierra la película fotográfica con las preciadas imágenes captadas por la cámara ASA-43R del Agat. La estación debía tener un radar de apertura sintética para labores de espionaje en condiciones climatológicas o de iluminación poco favorables. Un cañón de 30 mm construido por la oficina de Alxánder Núdelman se encargaría de mantener alejados a los posibles satélites enemigos que quisieran inspeccionar la "fortaleza" espacial soviética.

Ilustración/sección de una nave TKS en órbita; al fondo, una estación OPS Almaz.

Las OPS debían despegar a bordo de un Protón-K con tripulación. Para ello, Cheloméi decidió adaptar las cápsulas VA de las naves LK-1 y LK-700 al programa Almaz. La VA (11F74) estaría colocada en la parte delantera de la estación y tendría capacidad para tres cosmonautas. El problema era cómo acceder a la estación desde la cápsula. La solución adoptada por la oficina OKB-52 fue la misma que la propuesta para las cápsulas Gémini del programa MOL. La VA tendría una escotilla de acceso a través del escudo térmico, una solución arriesgada, pero factible según los cálculos de los ingenieros.

Lanzador Proton en la rampa de lanzamiento con la nave TKS en su cofia. Arriba, la cápsula VA con la torre de escape ADU.

Puesto que la capacidad máxima del Protón-K en órbita baja era de unas 22 toneladas, la OPS sólo podía ser lanzada parcialmente equipada. Por lo tanto, habría que enviar naves adicionales con equipos y víveres para los cosmonautas. Estas naves (11F72) recibirían el nombre de TKS (Transportni Korabl Snabzhenia / Транспортный Корабль Снабжения, ТКС, "nave de transporte y de servicio") y también serían lanzadas con tripulación. Tendrían una masa al lanzamiento de 21,62 toneladas (17,57 toneladas en órbita) y estaban divididas en dos partes: un módulo de carga y propulsión (11F77) denominado FGB (Funktsionalno-Gruzovoi Blok/Функционально Грузовой Блок) y una cápsula VA. Con esa masa, las TKS eran en realidad pequeñas estaciones espaciales por méritos propios. Para aumentar el volumen habitable, se decidió instalar los tanques de combustibles hipergólicos en el exterior del FGB, una solución ingeniosa.

Pruebas de una nave TKS.

El FGB estaba equipado con dos motores DKS KRD-442 (11D442), de 447 kgf de empuje y con capacidad para encenderse hasta 100 veces durante un máximo de 2600 segundos. Incorporaba también cuatro grupos de cinco pequeños motores DPS para control de actitud. Cada uno de los veinte motores tenía un un empuje de 40 kgf. Además existían dos grupos de ocho motores DTS para ajustes finos y acoplamiento con un empje de 1,2 kgf. Las TKS se debían acoplar al único puerto de atraque de la OPS, permitiendo equipar la estación y relevar las tripulaciones. El acoplamiento se podía efectuar de forma automática, usando el sistema de radar Iglá-1R (una variante del empleado en las Soyuz y Salyut) o manual. En este último caso, la tripulación se pondría a los mandos del TKS delante de un panel de control situado en la parte "trasera" del FGB, es decir, con la nave volando "al revés". A diferencia de las Soyuz, donde la tripulación debe controlar el acoplamiento usando un periscopio, los cosmoanutas del TKS podrían supervisar la operación directamente mirando a través de una ventanilla diseñada a tal propósito. Estas naves de carga servirían además para elevar regularmente la órbita de la OPS y contrarrestar así el inexorable frenado atmosférico, además de encargarse del control de actitud de todo el complejo durante un periodo máximo de 90 días.

Aunque se las suele confundir con el programa TKS, las VA estaban diseñadas para ser independientes del resto de elementos del programa Almaz. Es decir, podrían regresar con la tripulación en cualquier momento dejando atrás el FGB o la OPS correspondiente. Por este motivo, la oficina de Cheloméi ideó una curiosa configuración para la nave, con los motores de frenado y maniobra orbital delante de la cápsula, en vez de estar situados en un módulo de servicio como mandan los cánones astronáuticos.


La cápsula VA resultante estaba dividida en tres partes:
  • Una torre de escape para rescatar a los cosmonautas en caso de problemas durante el despegue denominada ADU (Avarinaia Dvigatelnaia Ustanovka/Аварийная Двигательная Установка). En caso de emergencia, los motores de combustible sólido del ADU se encenderían junto con los del TDU, generando 86 toneladas de empuje. Si la emergencia tenía lugar en la rampa, el sistema permitía alcanzar una altura mínima de 1,5 km, suficiente para desplegar los paracaídas. Esta torre se eyectaba durante el despegue.
  • El compartimento con los motores de frenado orbital TDU (Tormoznaia Dvigatelnaia Ustanovka/Тормозная Двигательная Установка). Las cuatro toberas del TDU proporcionaban una Delta-V de 100 m/s, suficiente para iniciar la reentrada después de un vuelo orbital. El TDU también funcionaba con los motores del sistema de emergencia ADU para alejar la cápsula en caso de problemas.
  • La cápsula propiamente dicha, formada por dos secciones cónicas de distinto ángulo. La sección frontal incluía el sistema de motores RSU a base de combustibles hipergólicos para controlar la cápsula durante la reentrada, tres paracaídas piloto y los cohetes de frenado para el aterrizaje. La sección posterior era la parte presurizada de la nave, con los sistemas de soporte vital para los cosmonautas. La VA incluía tres escotillas: una lateral (la principal, con una ventanilla) para el acceso de la tripulación en la rampa y su evacuación tras el aterrizaje, otra escotilla superior para ser usada en casos de emergencia (amerizajes, por ejemplo) y una última de 550 mm situada en el escudo térmico para acceder al FGB o a la OPS una vez en órbita. Dentro de la nave habían tres asientos Kazbek con amortiguadores y un ordenador Argón 12.
Una cápsula VA en su configuración orbital.



El diámetro máximo de la VA era de 2,79 metros y su forma había sido refinada gracias a los cálculos del prestigioso instituto TsAGI. Con el ADU, la masa de la VA al lanzamiento se aproximaba a los 7300 kg (4900 kg en órbita) y su longitud era de 10,3 metros. Tras la reentrada, la VA desplegaría tres paracaídas a una altura de 10 km, reduciendo su velocidad a unos 6,5 m/s. A 1-5 metros de altura, el altímetro de rayos gamma Kaktus daría la orden de encender un conjunto de cohetes de combustible sólido (basados en los empleados en la bomba FAB-3000) instalado en las líneas del paracaídas, permitiendo que la nave aterrizase en las estepas kazajas si sobrepasar los 3 m/s. Este curioso sistema de aterrizaje recuerda al empleado por las sondas estadounidenses Spirit y Opportunity en Marte. El error a la hora de tocar tierra no debía ser superior a una elipse de 13x27 km. La VA podía traer de regreso desde la órbita tres cosmonautas y 50 kg de carga, o bien sólo 500 kg en una misión no tripulada.

Panel de control de una VA.

La parte más curiosa de la VA era su revolucionario escudo térmico. Construido a base de tela de silicio impregnada con sustancias ablativas, podía ser reutilizado hasta diez veces (¿quién dijo que una cápsula no puede ser reutilizable?).El sistema de soporte vital de la VA permitía mantener con vida a los astronautas durante 31 horas, aunque la cápsula sólo podría volar de forma autónoma unas tres horas después de separarse del complejo Almaz. Tiempo más que suficiente para regresar a la Tierra. Aunque en principio la tripulación no debía llevar ningún traje de presión, tras el accidente de la Soyuz 11 en 1971 se decidió equipar a los cosmonautas del VA con trajes Sokol-T.

Interior de una VA con los asientos Kazbek de la tripulación frente al panel de control.

Vista del interior del habitáculo de la VA a través de una escotilla abierta.
Vista de tres cuartos del habitáculo presurizado de la VA; se distingue en rojo la zona de unión con la sección frontal de la cápsula con la escotilla de emergencia en caso de amerizaje.

Los vuelos Salyut

El programa Almaz parecía disfrutar de buena salud, pero en 1969 ocurrió algo inesperado. Ingenieros de alto rango de la OKB-1 de Koroliov --fallecido cuatro años antes-- se reúnen en secreto con miembros de la OKB-52 para construir una estación espacial basada en las OPS del programa Almaz. La OKB-1 propone utilizar los sistemas de propulsión, energía y soporte vital de la nueva Soyuz en las OPS de Cheloméi, precisamente los sistemas que más retrasos acumulaban. De este modo se podría lanzar una estación espacial en muy poco tiempo. En vez de usar las VA, las tripulaciones viajarían a bordo de naves Soyuz. Tanto Cheloméi como Vasili Mishin (ingeniero jefe de la OKB-1/TsKBEM) se opondrán vehementemente a estas "negociaciones". La prioridad de Mishin era el programa lunar N1-L3, mientras que para Cheloméi todo el proyecto no era más que un "robo" de la OKB-1. Pero el grupo de conspiradores decide jugársela y propone su idea al gobierno soviético. Contra todo pronóstico, el engendro OPS-Soyuz sale adelante bajo la denominación de "estación espacial de larga duración" o DOS (Dolgovremennaia Orbitalnaia Stantsia/Долговременная Орбитальная Станция, ДОС). El mundo las conocería como Salyut.


Estación OPS con una Soyuz.

A pesar de las estaciones DOS, el programa Almaz sigue adelante. El 16 de junio de 1970, el Consejo de Ministros de la URSS autoriza el desarrollo del las OPS y TKS mediante el decreto Nº 437-160. Tres estaciones Almaz serían lanzadas en el periodo 1972-1976 "camufladas" dentro del programa civil Salyut (Salyut 2, Salyut 3 y Salyut 5). No obstante, las OPS serían canceladas en 1978 por las presiones del ministro de defensa Dmitri Ustínov, el eterno enemigo de Cheloméi. Pero las VA no morirían con las OPS. Las naves de TKS podían ser usadas como el complemento perfecto para las DOS, por lo que el programa siguió adelante. Entre 1975 y 1979 se realizaron con éxito varias pruebas del sistema de emergencia SAS-ADU en Baikonur, pero aún había que probar la idoneidad de la VA en una misión espacial real. Para este fin, en 1974 daría comienzo el proyecto 82LB72 para lanzar cápsulas VA de dos en dos mediante un curioso sistema en tándem empleando un sólo lanzador Protón-K.
Protón-K con dos cápsulas VA en la configuración 82LB72.


El 15 de diciembre de 1976 se lanzarían las dos primeras VA a bordo de un Protón. Una vez en órbita, recibirían el nombre de Kosmos 881 y Kosmos 882. Tras completar una sola órbita, ambos vehículos realizaron una reentrada balística (8-9 g) sobre la URSS, aterrizando sin problemas. Después de tantos años, las VA de Cheloméi habían viajado por primera vez al espacio. Poco después, el 17 de julio de 1977 despegaría la primera TKS, Kosmos 929, cuya cápsula VA regresaría a la Tierra un mes más tarde.

Entre 1976 y 1983 se realizaron once lanzamientos de cápsulas VA, demostrando su efectividad en condiciones reales. La última de ellas, correspondiente a la TKS-3 (Kosmos 1443) recibiría la visita de los cosmonautas Vladímir Liajov y Aleksndr Aleksandrov mientras estuvo acoplada a la estación Salyut 7. Aunque en esa ocasión los asientos de la VA habían sido sustituidos por contenedores de carga, sería la única vez que una tripulación accedería al interior de una VA en el espacio. Sería lo más cerca que estuvo Cheloméi de ver hecho realidad su sueño antes de morir en 1984.

Instalación del sistema ADU en un vuelo 82LB72.
Traslado a la rampa del lanzador Protón.

Numerosos cosmonautas se entrenaron para pilotar las VA/TKS, llegándose a realizar múltiples misiones simuladas en tierra usando el entrenador TDK-F74. Lamentablemente, ninguno pudo viajar al espacio a bordo de una VA. El programa languidecería lentamente hasta ser cancelado a mediados de los 80. El sistema de naves automáticas Progress --basadas en las Soyuz-- hacían innecesarias las costosas TKS para abastecer las estaciones Salyut. Por otro lado, la introducción de las Soyuz-T, con una tripulación de tres cosmonautas, eliminó la ventaja en el número de cosmonautas transportados por la VA.
Los cosmonautas G. Sarafanov, V. Romanov y V. Preobrazhenski con trajes espaciales Sokol-T y barbas crecidas después de pasar ocho días en el simulador terrestre de la VA TDK-F74 (imagen de la derecha)

Tras la caída de la URSS, las cápsulas VA serían conocidas en Occidente durante un tiempo con el apodo de Merkur. El origen de este nombre se debe a un malentendido que tuvo lugar durante una visita guiada a una de las instalaciones donde se almacenaban las VA realizada por un grupo de estadounidenses. El guía ruso del grupo diría de las VA "son como vuestras Mercurio", originando la confusión por culpa de una mala traducción. En realidad, Merkur no tiene ningún significado en ruso (Mercurio se dice Merkuriy).

El programa Almaz seguiría vivo hasta nuestros días de una forma bastante insólita, ya que los módulos FGB servirían de base para los módulos de la estación Mir. De hecho, el primer módulo de la estación espacial internacional, Zaryá, es un derivado del FGB de la TKS. Paradójicamente, el núcleo de la ISS debe su existencia al programa de Cheloméi.


Detalle de la VA (Excalibur Almaz).

En los años 90, la empresa Excalibur Almaz adquirió varias cápsulas VA y estaciones OPS para ser ofertadas en vuelos espaciales comerciales. Pese a que el futuro de esta compañía no está muy claro, podría ser la última oportunidad de resucitar esta venerable nave. Quién sabe, a lo mejor un día una VA modificada podría viajar alrededor de la Luna, tal y como imaginó Cheloméi hace casi medio siglo.


Crédito de las imágenes: ciudadfutura.net, OKB-52/TsKBM (URSS), Novosti Kosmonavtiki, Excalibur Almaz.

Referencias:
  • Sputnik and the Soviet Space Challenge, Asif A. Siddiqi (University Press of Florida, 2003).
  • The Soviet Space Race with Apollo, Asif A. Siddiqi (University Press of Florida, 2003).
  • Almaznie Kosmonavti, S. Shamsutdinov (Novosti Kosmonavtiki, nº 12 2000).
  • Drugoi Korabl, I. Afanasyev (Novosti Kosmonavtiki, nº 9 y nº 11 2002; nº 5, 2003).
  • Chetvert veka Almazu, I. Afanasyev, I. Marinin, S. Shamsutdinov (Novosti Kosmonavtiki nº 8, 1999).

La nave espacial soviética que copiaron los Estados Unidos

La nave espacial soviética que copiaron los Estados Unidos

La nave espacial soviética que copiaron los Estados Unidos

El 3 de junio de 1982, un avión P-3C Orión de la fuerza aérea australiana fue despachado urgentemente al Océano Índico para interceptar y fotografiar una misteriosa nave espacial soviética que acababa de amerizar a 560 kilómetros al sur de las Islas Cocos. El satélite, designado Kosmos-1374, había despegado desde el cosmódromo de Kapustin Yar apenas una hora y media antes. Aunque nadie lo podía sospechar en ese momento, el regreso de la Kosmos-1374 terminaría por desencadenar una serie de eventos que culminarían en la copia del diseño de una nave soviética por parte de los Estados Unidos.

En el Océano Índico se encontraban siete navíos soviéticos con la misión de recuperar la nave lo antes posible e impedir su captura por parte del enemigo. También debían evitar a toda costa que el vehículo fuese fotografiado por los aviones de reconocimiento. Tras dar una vuelta a la Tierra, la Kosmos-1374 encendió sus motores de frenado y reentró en la atmósfera terrestre, descendiendo 200 kilómetros más lejos de lo esperado. Aunque la tripulación de uno de los buques -el Yamal- localizó rápidamente la nave, necesitaron varios intentos para izar el vehículo por culpa del fuerte oleaje. Demasiado tarde, porque no pudieron evitar que los indiscretos ojos del P-3C captasen el momento en el que la nave era depositada sobre la cubierta. El avión sobrevoló el buque tan cerca que los marineros temieron que pudiese colisionar contra algún mástil.



La tripulación del Yamal recupera la Kosmos-1374 de las aguas del Océano Índico después de su vuelo espacial. El cono que sobresale en la parte delantera servía para que el vehículo pudiese flotar (www.buran.ru).

Para sorpresa de la inteligencia estadounidense, las fotos revelaron un vehículo espacial nunca visto hasta entonces. No se trataba de una cápsula convencional, sino de una pequeña lanzadera espacial. Pese a que obviamente se trataba de un modelo a escala, las imágenes dieron la vuelta al mundo menos de una semana después. ¡La URSS tiene un transbordador espacial! El 15 de marzo de 1983 se volvió a repetir la historia con el lanzamiento del Kosmos-1445. La nave reentró en la atmósfera terrestre sobre Afganistán, vigilada de cerca por dos aviones Ilyushin Il-18RT. Teniendo en cuenta que la Guerra de Afganistán estaba en su apogeo, no es de extrañar que las dos aeronaves de reconocimiento volasen protegidas por un escuadrón entero de cazas. Esta vez, las imágenes tomadas por el P-3C australiano fueron aún mejores.


La nave Kosmos-1445 fotografiada por el avión Orión P-3 australiano (www.buran.ru).


HL-20: la copia estadounidense

La forma del pequeño transbordador soviético intrigó desde un primer momento a los ingenieros estadounidenses. Con un amplio morro curvado y unas alas muy cortas, las minilanzaderas eran muy distintas al shuttle o el antiguo Dyna Soar. Se trataba de un cuerpo sustentador que recordaba vagamente al avión experimental Northrop HL-10, pero, ¿por qué habían construido los soviéticos un transbordador con esta forma? Muchos expertos occidentales pensaron en un primer momento que el diseño era extremadamente ineficiente. "Otra prueba del atraso tecnológico de la URSS", declararon algunos. Para aclarar el misterio, la NASA construyó varios modelos aerodinámicos de las lanzaderas para ser sometidos a pruebas en los túneles de viento del Centro de Investigación Langley.


Modelo aerodinámico construido por la NASA para estudiar el diseño de las lanzaderas soviéticas (www.astronautix.com).

Para sorpresa de los curtidos ingenieros de Langley, el diseño soviético no era en absoluto ineficiente. Al contrario, presentaba unas magníficas características aerodinámicas, tanto a velocidades hipersónicas como subsónicas. La curiosa forma achaparrada garantizaba una estabilidad nunca vista en un vehículo espacial alado, además de asegurar unas temperaturas relativamente bajas en el escudo térmico durante la reentrada. Por si fuera poco, la nave podía ser capaz de alejarse 2040 km de su trayectoria balística (cross-range), toda una sorpresa teniendo en cuenta el pequeño tamaño de sus alas.

En febrero de 1986 el transbordador Challenger se desintegró sobre el cielo se Florida y la NASA comenzó a evaluar opciones para construir un vehículo de emergencia de cara a la futura estación espacial Freedom. Si en el futuro tenía lugar una tragedia similar, los astronautas de la Freedom no contarían con ningún medio para regresar a la Tierra. Para evitar este terrible escenario, la NASA creó el programa CERV (Crew Emergency Rescue Vehicle).

Entre las distintas propuestas que surgieron para el CERV, el centro Langley presentó la nave HL-20. Se trataba de un transbordador con capacidad para ocho personas con -y aquí estaba la sorpresa- una forma basada en el diseño de las lanzaderas soviéticas. El HL-20 serviría como espina dorsal del PLS (Personal Launch System), un programa tripulado capaz de complementar al transbordador espacial y servir como vehículo de emergencia en la Freedom. Por supuesto, la "inspiración" soviética no se mencionó por ningún lado en la mayoría de documentos relacionados con el HL-20 (de hecho, está ausente en la entrada de la Wikipedia en inglés sobre el tema, todo un ejemplo de cómo se debe reescribir la historia para que no moleste).



Reconstrucción occidental de una lanzadera soviética basada en el diseño las Kosmos-1445 y Kosmos-1374 (arriba) y el HL-20 de la NASA (abajo) (NASA).



Planta del HL-20 (arriba) y del avión espacial soviético Spiral (abajo). Las similitudes en el diseño son más que evidentes (NASA / www.buran.ru).

En octubre de 1988, el transbordador soviético Burán realizó su primer y único vuelo. No pocos expertos occidentales se quedaron de piedra cuando comprobaron que el diseño de la lanzadera soviética era virtualmente idéntico al shuttle norteamericano y que no tenía nada que ver con las pequeñas naves recuperadas en el Océano Índico cinco años antes. Los servicios de inteligencia llegaron a la conclusión de que la URSS estaba desarrollando en paralelo otro programa de transbordadores espaciales más pequeños, programa que bautizó como Uragán ("huracán"). Sin embargo, tras la caída de la Unión Soviética en 1991 se pudo comprobar que Uragán nunca existió y que había sido un simple espejismo de la Guerra Fría. En realidad, el origen de las minilanzaderas soviéticas se revelaría aún más fascinante.



Distintas versiones del HL-20 (www.astronautix.com).


El HL-20 como vehículo de rescate para la Freedom (www.astronautix.com).


Spiral y BOR

A finales de los años 50, el camino al espacio pasaba por los aviones espaciales. O al menos eso es lo que pensaban los militares estadounidenses. La Fuerza Aérea de los EEUU (USAF) empleó una gran cantidad de recursos para sacar adelante un interceptor espacial denominado Dyna Soar. Por supuesto, los soviéticos no se quedaron atrás y pronto responderían con el programa secreto Spiral (Спираль).

Aunque el Dyna Soar fue cancelado en 1963, Spiral seguiría adelante y en 1965 el proyecto sería oficialmente asignado a la famosa oficina de diseño OKB-155 de Artem Mikoyan (diseñador de los aviones MiG), con Gleb Lozino-Lozinsky como ingeniero principal del programa. El decreto gubernamental del 29 de junio de 1966 preveía el lanzamiento del Spiral usando un sistema TSTO (Two Stage to Orbit) usando un avión hipersónico denominado "50-50", una etapa cohete y el pequeño avión espacial propiamente dicho, llamado simplemente "50" o "avión orbital" (OS, Orbitalni Samoliot). El avión hipersónico aceleraría hasta alcanzar Mach 6 (1,8 km/s), momento en el cual se separaría la segunda etapa con la lanzadera, que proseguiría hasta alcanzar el espacio. En 1966 se creó en el centro de entrenamiento de cosmonautas (TsPK) la Sección-50 para entrenar a los futuros pilotos del Spiral. Entre los candidatos se encontraba el segundo cosmonauta de la historia, German Titov.


Configuración inicial del Spiral, con el avión hipersónico 50-50 (www.buran.ru).


Gleb Lozino-Lozinsky, encargado del proyecto Spiral y Burán.

El curioso diseño del OS que tanto sorprendería a los ingenieros de la NASA veinte años después fue resultado de arduos cálculos y pruebas por parte de la oficina de Mikoyan y el mítico Instituto Central de Aerohidrodinámica (TsAGI). El escudo térmico inferior estaría formado por una combinación de materiales ablativos y una aleación de niobio y molibdeno. A la vista de los tremendos desafíos tecnológicos a la hora de diseñar el avión hipersónico 50-50, se decidió a finales de los años 60 lanzar el OS mediante cohetes convencionales Soyuz (11A511), al menos en una primera fase.


Recreación del Spiral en órbita (www.buran.ru).


El Spiral en configuración de lanzamiento con un cohete Soyuz (www.buran.ru).


Versión interceptora del Spiral (www.buran.ru).

Spiral tenía como objetivo llevar a cabo misiones de reconocimiento militar o de intercepción de satélites. Lamentablemente, a principios de los años 70 el programa había acumulado numerosos enemigos, entre los cuales se encontraban el ministro de defensa Andréi Grechko y el poderoso Dmitri Ustínov. Para sus oponentes, Spiral era un proyecto fantasioso sin ninguna aplicación real más allá de devorar los presupuestos del estado.

El plan original preveía llevar a cabo los primeros vuelos orbitales en 1973, pero Spiral fue cancelado de forma no oficial un año antes. Eso sí, el programa Spiral no se limitó a diseñar vehículos de papel. Para las pruebas atmosféricas en régimen subsónico se construyó el avión EPOS (Экспериментальный Пилотируемый Орбитальный Самолета-аналога, ЭПОС), también denominado MiG 105.11. EPOS demostró en varias ocasiones el buen comportamiento aerodinámico del diseño, tanto de forma autónoma como en vuelos desde en Túpolev Tu-95KM. En este último caso, el EPOS iba dotado con un tren de aterrizaje con patines en vez de ruedas, al igual que el OS de serie. Como anécdota curiosa, la tripulación de tierra solía emplear sandías para "lubricar" la pista de aterrizaje. Se llegó a construir un prototipo de pruebas supersónicas -el 105.12-, pero no llegó a volar nunca.


El MiG 105.11 EPOS (www.buran.ru).

Además del EPOS, para probar el escudo térmico y el comportamiento a altas velocidades de la lanzadera se creó el programa BOR (Bespilotni Orbitalni Raketoplan, "avión espacial orbital no tripulado). Entre 1969 y 1972 se realizaron siete vuelos suborbitales de los modelos BOR-1 (una maqueta de madera), BOR-2 (modelo del Spiral a escala 1:3) y BOR-3 (escala 1:2). En estas pruebas ese utilizó un cohete Kosmos-2 (11K65) lanzado desde Kapustin Yar.


BOR-2: maqueta a escala 1:3 del Spiral para vuelos suborbitales (www.buran.ru).

Ironías del destino, poco después de cancelarse el programa Spiral los militares empezaron a preocuparse por el proyecto del transbordador espacial estadounidense. Debido a la importante participación del Pentágono en el proyecto, el gobierno soviético sospechaba que el shuttle pudiese ser empleado para objetivos militares desconocidos. Como consecuencia de estos temores, a mediados de los 70 se decidió crear el programa Energía-Burán con el objetivo de crear un sistema análogo a la lanzadera norteamericana. Aunque la dirección general del proyecto recaería en la oficina de diseño de Valentín Glushkó (NPO Energía, antigua OKB-1 de Serguéi Koroliov), se creó la oficina NPO Mólniya para la construcción del orbitador. El ingeniero jefe de NPO Mólniya sería, como no, Gleb Lozino-Lozinsky, antiguo encargado del OS del Spiral.

Lozino-Lozinsky decidió entonces utilizar los BOR sobrantes del programa Spiral para probar el nuevo escudo térmico cerámico del Burán en misiones orbitales. La nueva serie de raketoplanos recibió la denominación oficial BOR-4. Los BOR-4 eran modelos a escala 1:2 del Spiral con una masa de 1450 kg (655 kg de combustible). Se efectuaron cuatro lanzamientos espaciales de los BOR-4 mediante cohetes K65M-RB5 (un Kosmos-3M modificado): Kosmos-1374 (1982), Kosmos-1445 (1983), Kosmos-1517 (1983) y Kosmos-1614 (1984), además de un lanzamiento suborbital previo en 1980.


BOR-4 (www.buran.ru).


Kosmos-1374 (www.buran.ru).

El espectáculo mediático que se desató en la prensa occidental después del amerizaje en el Océano Índico por parte de los BOR-4 Kosmos-1374 (nº 404) y Kosmos-1445 (nº 403) incomodó sobremanera a los militares soviéticos. Al fin y al cabo la mismísima existencia del programa Spiral era aún alto secreto. Para evitar problemas, los dos últimos BOR-4 amerizaron en las aguas soviéticas del Mar Negro, a salvo de miradas indiscretas. Los cuatro vuelos orbitales no tripulados de la serie BOR-4 fueron el coletazo final del proyecto Spiral, pero también -paradójicamente- su momento cumbre.


Configuración de lanzamiento de los BOR-4 (www.buran.ru).


Dream Chaser: ¡Spiral vive!

Por diversos motivos, el programa HL-20 de la NASA no llegaría a ver la luz, pero eso no quiere decir que el diseño del Spiral fuese olvidado en un oscuro cajón. Ni mucho menos. En 2004, la empresa norteamericana SpaceDev (actualmente Sierra Nevada Corporation) llegó a un acuerdo con el Centro Ames de la NASA para desarrollar una nave espacial basada en el diseño del HL-20, nave que se denominaría Dream Chaser. En febrero de 2010, Dream Chaser fue una de las propuestas agraciadas por la NASA dentro de su programa CCDev (Commercial Crew Development Program) para crear un sustituto privado al transbordador espacial. En su versión actual, Dream Chaser es una nave de 9,6 x 8 metros capaz de transportar entre seis y nueve astronautas hasta la ISS.



Dream Chaser, el heredero de Spiral (Sierra Nevada Corporation).


BOR-4 (Novosti Kosmonavtiki).

Todavía le queda mucho por delante, pero si alguna vez llega a volar, Dream Chaser será el último exponente de un diseño creado hace casi cincuenta años por el equipo de Gleb Lozino-Lozinsky en plena Guerra Fría y a un continente de distancia. Quién iba a imaginar que las fotografías de una nave espacial soviética tomadas por un avión de reconocimiento australiano resultarían claves a la hora de diseñar uno de los posibles sustitutos del transbordador espacial. Hoy más que nunca, Spiral vive.

Referencias:
  • Energiya-Buran: The Soviet Space Shuttle, Bart Hendrickx y Bert Vis (Springer-Praxis, 2007).
  • HL-20, Mark Wade.
  • Spiral, Vadim Lukashevich (www.buran.ru).
  • Dream Chaser.

Eureka: La mayor estructura del Universo

Eureka: La mayor estructura del Universo

La mayor estructura del Universo


¿Cuál es la mayor estructura conocida por el hombre? El récord lo ostenta un supercúmulo de miles de galaxias llamado la Gran Muralla Sloan (Sloan Great Wall, SGW). Su tamaño es tan monstruoso que resulta imposible de asimilar para la mente humana. Con una longitud de 1370 millones de años luz, es tan grande que ocupa casi 1/30 parte del radio del Universo visible (unos 47 mil millones de años luz). La SGW está situada a unos mil millones de años luz de la Vía Láctea y fue descubierta en 2003 por J. Richard Gott y Mario Jurić, de la Universidad de Princeton, a partir de los datos del Sloan Digital Sky Survey (SDSS). La SGW está formada por varios supercúmulos galácticos, siendo el mayor de ellos SC1 126.

Hasta el descubrimiento de la SGW, la mayor estructura conocida era la Gran Muralla CfA2, descubierta en 1989 por Margaret Geller y el recientemente fallecido John Huchra. La Gran Muralla CfA2 está situada a 350-500 millones de años luz de la Vía Láctea, tiene unos 500 millones de años luz de longitud y un espesor de "sólo" 20 millones de años luz.


La Gran Muralla Sloan (arriba) a la misma escala de la Gran Muralla CfA2 (abajo). La Vía Láctea está situada en el vértice de cada segmento circular. Cada punto en esta imagen es un cúmulo de galaxias con cientos de miles de millones de estrellas (Gott et al.).

El nombre de "muralla" se debe a que el espesor de la SGW es muy pequeño comparado con su longitud. En realidad, la SGW es lo que se denomina un superfilamento de la telaraña cósmica, la compleja estructura formada por los cúmulos de galaxias en el universo observable. Los cúmulos y supercúmulos galácticos no están distribuidos arbitrariamente por el espacio, sino que se agrupan formando una red de nodos, filamentos y vacíos. Este patrón cósmico se originó poco después del Big Bang gracias a la influencia de la materia oscura, que es el principal componente de la masa de estos cúmulos. Aunque por lo general sólo somos capaces de ver la "materia normal" (materia bariónica, esto es, las estrellas que componen las galaxias), se supone que la distribución de materia oscura a gran escala debe seguir más o menos la distribución de la materia bariónica visible.

Las simulaciones por ordenador de la evolución del Universo predicen de forma bastante precisa la formación de esta red de filamentos y vacíos en un cosmos dominado por la materia oscura fría y la energía oscura (modelos ΛCDM). Por lo tanto, le corresponde a la astrofísica observacional rebatir la fidelidad de estos modelos mediante la realización de mapas tridimensionales de las estructuras del Universo. Aunque la existencia de la Gran Muralla CfA2 no contradice los modelos ΛCDM, la SGW es tan enorme no casa bien con todos ellos. De hecho, muchas simulaciones numéricas han sido incapaces de reproducir las propiedades de la SGW. Hay que tener en cuenta que uno de los principios fundamentales de la cosmología es que, a gran escala, el Universo es básicamente homogéneo. Esta frontera se denomina "límite de la grandeza" y tiene un valor aproximado de 300 millones de años luz.


Estructura de filamentos y vacíos del Universo a gran escala según los modelos ΛCDM.

¿Y qué hay más allá de la SGW? La cuestión es compleja, porque levantar un mapa del Universo no es lo mismo que hacer un mapa de carreteras de la provincia más cercana. Más allá de las obvias dificultades técnicas, el problema es que a medida que nos alejamos de la Vía Láctea estamos viajando hacia atrás en el tiempo. Además, debemos recordar que el Universo no es estático, sino que se está expandiendo continuamente. En cualquier caso, si hacemos un mapa a gran escala veremos que a partir de cierta distancia (o edad) las galaxias empiezan a dejar paso a los cuásares (núcleos de galaxias activas). En total se estima que en el Universo visible hay unos 170 mil millones de galaxias, lo que hace un total de 1022 - 1024 estrellas.


Mapa de los cúmulos galácticos cercanos vistos por el SDSS. La Vía Láctea está en el centro


Mapa del Universo conocido. El mapa de arriba con la Gran Muralla Sloan cabe en el pequeño círculo del centro (Gott et al.).


Escalas del Universo medidas desde el centro de la Tierra (Gott et al.).

Es muy posible que la SGW no sea la mayor estructura en el Universo observable. Al fin y al cabo, el SDSS sólo ha medido el corrimiento al rojo (z) de una pequeña fracción de galaxias. Además, los cúmulos más lejanos -y por lo tanto, los más jóvenes- son también más difíciles de detectar. No obstante, la teoría nos dice que no deberían existir estructuras mucho más grandes que la SGW. De encontrarlas, la cosmología actual se enfrentaría a un serio problema.


Varios cúmulos y supercúmulos galácticos vistos desde la perspectiva de la Tierra (en coordenadas galácticas) (2Mass Survey).

Más información:

domingo, 15 de mayo de 2011

La bomba de agua más grande del mundo

La bomba de agua más grande del mundo: "


En el rio Mississippi está situada la bomba de agua más grande del mundo. Es tan grande que mueve el equivalente a 15 piscinas olímpicas por minuto. Tiene 5000 caballos de potencia y costó la friolera de 500 millones de dólares.


Recordemos que en New Orleans ocurrieron una de las peores inundaciones de la historia así que seguramente una máquina de este calibre les será de utilidad.


Os contamos más datos sobre la máquina tras el salto.


Está “motobomba” XXL se está construyendo en Nueva Orleans ya que se prevé que desastres como la inmensa crecida del río Mississippi se puedan repetir. El edificio que la protege mide casi 10 metros de alto y más de 68 metros de lado. Y para mi el dato más impresionante es que pesa la friolera de 197 toneladas.


Aquí os dejamos una foto de cuando el motor diesel de esta bomba salió de la planta de construcción.



Te podemos asegurar que esta bomba no funciona para el acuario de tu casa pero si necesitas regar media Andalucía te vendrá bien. – Yeray Alfageme

"

Sagrado Corazón de Jesús

Sagrado Corazón de Jesús
¡Deténte! El Corazón de Jesús está conmigo. ¡Venga a nosotros tu reino

(El Halcon Negro) Pedro Gonzalez's Fan Box

Pedro Gonzalez on Facebook

Elementos compartidos de infragon

Premio Recibidos, nominaciones y roles en la web

Blog Creado en Libertad - Postulación

Blog Creado en Libertad - Postulación
Gracias a Inés de Cuevas, Libertad Preciado Tesoro y La Protesta Militar

Premios 20Blogs (Categorías Blog Latinoamericano y Diseño)

Premios 20Blogs

Blog Ácido

Blog Ácido
Gracias por la postulacion en la categoria de Noticias

Premio Dardos

Premio Dardos
Agredecemos a Epicentro Hispánico

Premio Symbelmine de solidaridad entre Blogueros

Premio Symbelmine de solidaridad entre Blogueros
Gracias al Blog del padre Carlos

Premio 11 de Abril de 2002

Premio 11 de Abril de 2002
Muchas gracias a Libertad Preciado Tesoro, El Blog del Padre Carlos, Inés de Cuevas y el blog el que siembra su maiz

Premio inconfidentes

Premio inconfidentes
Agradecimiento al Blog del Padre Carlos Ares

Premio a Liberar el Tocororo

Premio a Liberar el Tocororo
Agradecimiento a Todos por una Cuba Libre

Campañas que Apoyamos

Nube de etiquetas de Technorati

Authority by Technorati

Widgetbox Blog Network: Politics

BBC Mundo | Portada

CNN.com

Creative Commons License
El Hijo del Halcon Negro by Msc Ing Francisco Javier Gonzalez Rodriguez is licensed under a Creative Commons Reconocimiento-No comercial-Compartir bajo la misma licencia 3.0 Unported License.